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Abstract— Depth completion recovers a dense depth map
from sensor measurements. Current methods are mostly tai-
lored for very sparse depth measurements from LiDARs in
outdoor settings, while for indoor scenes Time-of-Flight (ToF) or
structured light sensors are mostly used. These sensors provide
semi-dense maps, with dense measurements in some regions and
almost empty in others. We propose a new model that takes
into account the statistical difference between such regions. Our
main contribution is a new decoder modulation branch added to
the encoder-decoder architecture. The encoder extracts features
from the concatenated RGB image and raw depth. Given the
mask of missing values as input, the proposed modulation
branch controls the decoding of a dense depth map from these
features differently for different regions. This is implemented
by modifying the spatial distribution of output signals inside
the decoder via Spatially-Adaptive Denormalization (SPADE)
blocks. Our second contribution is a novel on-the-fly sensor
simulation strategy that allows us to train on a semi-dense
sensor data when the ground truth depth map is not available.
Our model achieves the state of the art results on indoor
Matterport3D dataset [1]. Being designed for semi-dense input
depth, our model is still competitive with LiDAR-oriented
approaches on the KITTI dataset [2]. Our sensor simulation
strategy significantly improves prediction quality with no dense
ground truth available, as validated on the NYUv2 dataset [3].

I. INTRODUCTION

In recent years, depth sensors have become an essen-
tial component of many devices, from self-driving cars to
smartphones. However, the quality of modern depth sensors
is still far from perfect. LiDAR systems provide accurate
but spatially sparse measurements while being quite ex-
pensive and large. Commodity-grade depth sensors based
on the active stereo with structured light (e.g., Microsoft
Kinect) or Time-of-Flight (e.g., Microsoft Kinect Azure or
depth sensors in many smartphones) provide estimations
that are relatively dense but less accurate and within a
limited distance range. LiDAR-based sensors are widely used
in outdoor environments, especially for self-driving cars,
while the other sensors are mainly applicable in an indoor
setting. Due to the rapid growth of the self-driving car
industry, the majority of recent depth completion methods
are mostly focused on outdoor depth completion for LiDAR
data [2], [4], [5], often overlooking other types of sensors
and scenarios. Nevertheless, these sensors are an essential
part of many modern devices (such as mobile phones, AR
glasses, and others).

LiDAR-oriented methods mainly deal with sparse mea-
surements. Applying these methods to depth data captured
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with semi-dense sensors as-is may be a suboptimal strategy.
This kind of transfer requires additional heuristics such as
sparse random sampling. The most popular approach [4],
[6], [7], [8] of training LiDAR-oriented methods on a semi-
dense depth map proceeds as follows. First, the gaps in
semi-dense depth maps are filled using simple interpolation
methods such as bilateral filtering or the approach of [9].
Then, some depth points are uniformly sampled from the
resulting map. This heuristic approach is used due to the
lack of LiDAR data for indoor environments, but such kind
of preprocessing suggests that it may be better to use a model
originally designed to operate with semi-dense data. Such
an approach would take into account the features of semi-
dense sensor data and would not require separate heuristics
for transfer.

Inspired by these observations, we present a novel solution
for the indoor depth completion from semi-dense depth maps
guided by color images. Since sensor data may be present for
60% of pixels and more, we propose to use a single encoder
for the joint RGBD signal. Taking into account the statistical
differences between regions with and without depth measure-
ments, we design a decoder modulation branch that takes
a mask as input and modifies the distributions of activation
maps in the decoder. This modulation mechanism is based on
Spatially-Adaptive Denormalization (SPADE) blocks [10].
Since there are few publicly available datasets with both
sensor and dense ground truth depth, we additionally propose
a special sensor simulation strategy for depth completion
models that emulates semi-dense sensors on-the-fly and does
not require dense depth reconstruction.

As a result, we offer the following contributions:
• a novel network architecture for indoor depth comple-

tion with a decoder modulation branch;
• a novel sensor simulation strategy that emulates semi-

dense sensors on-the-fly and does not require dense
depth reconstruction;

• large-scale experimental validation on real datasets in-
cluding Matterport3D, ScanNet, NYUv2, and KITTI.

The paper is organized as follows. In Section II, we
review related work on depth estimation and dense image
labeling. Section III presents our approach, including the new
architecture and simulation strategies. Section IV describes
the experimental setup, Section V presents the results of our
experiments, and Section VII concludes the paper.

II. RELATED WORK
In this section, we review works on several topics related

to depth processing for images or works that have served as
the original inspiration for our work. Namely, we cover depth
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Fig. 1: High-level architecture of the proposed DM-LRN
network. Pretrained EfficientNet [22] backbone encodes the
input RGBD signal. Extracted features are fed into the
lightweight RefineNet decoder [23]The decoder modulation
branch modifies the spatial distribution of output signals
inside the decoder via SPADE blocks [10].

estimation, depth completion, and semantic segmentation as
a well-studied case of dense image labeling.

a) Depth Estimation.: Methods for single view depth
estimation based on deep neural networks have significantly
evolved in recent years, by now rapidly approaching the
accuracy of depth sensors [11], [12], [13], [14], [15]; some
of these methods are able to run in real-time [16] or even
on embedded platforms [17]. However, the acquisition of
accurate ground truth depth maps is complicated due to cer-
tain limitations of existing depth sensors. To overcome these
difficulties, various approaches focusing on data acquisition,
data refinement, and the use of additional alternative data
sources have been proposed [18], [19]. We also note sev-
eral recently developed weakly supervised and unsupervised
approaches [20], [21].

b) Depth Completion.: Pioneering works on depth
completion adopted complicated heuristic algorithms for
processing raw sensor data. These algorithms were based
on compressed sensing [24] or used a combined wavelet-
contourlet dictionary [25]. Uhrig et al. [2] were the first
to present a successful learnable depth completion method
based on convolutional neural networks, developing spe-
cial sparsity-invariant convolutions to handle sparse inputs.
Learnable methods were further improved by image guid-
ance [5], [26]. Tang et al. [4] proposed an approach to train
content-dependent and spatially-variant kernels for sparse
depth features processing. Li et al. [27] suggested a multi-
scale guided cascade hourglass architecture for depth com-
pletion. Chen et al. [28] presented a 2D-3D fusion pipeline
based on continuous convolutions. Apart from utilizing im-
ages, some recently proposed methods make use of surface
normals [6], [29], [30], [31] and object boundaries [29], [31].

Most of the above-mentioned works focus on LiDAR-
based sparse depth completion in outdoor scenarios and
report results on the well-known KITTI benchmark [2].
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Fig. 2: Architecture of the decoder modulation branch (2a).
It contains a simple encoder composed of two biased convo-
lutions with activations and a series of SPADE blocks (2c).
These blocks include the SPADE layer (2b) that performs
modulation. We use LeakyReLU activations, as we predict
logarithmic depth directly.

There are only a few works that consider processing non-
LiDAR semi-dense depth data obtained with Kinect sensors.
Recently, Zhang et al. [31] introduced Matterport3D, a large-
scale RGBD dataset for indoor depth completion, and used it
to showcase a custom depth completion method. This method
implicitly exploits extra data by using pretrained networks
for normal estimation and boundary detection, and the result-
ing normals and boundaries are used in global optimization.
Overall, the complexity of this method strictly limits its
practical usage. Huang et al. [29] was the first to outperform
the original results on this dataset. Similar to Zhang et
al. [31], their results were achieved via a complicated multi-
stage method that involved resource-intensive preprocessing.
Although it does not rely on pretrained backbones, it uses a
normal estimation network explicitly trained on external data.
In this work, we propose a novel depth completion method
that presents strong baseline results while being scalable and
straightforward.

Depth completion and depth estimation can be formulated
as a dense labeling problem. Hence, techniques and architec-
tures that are designed for other dense labeling tasks might
be useful for depth completion as well. Encoder-decoder
architectures with skip connections originally developed for
semantic segmentation [32] have shown themselves to be
capable of solving a wide range of tasks. Chen et al. [33]
proposed a powerful architecture based on atrous spatial
pyramid pooling for semantic segmentation and improved
it in further work [34]. Other important approaches include
the refinement network [35] and the pyramid scene parsing
network [36]. At the same time, lightweight networks such
as [37] capable of running in a resource-constrained device
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Fig. 3: Qualitative comparison of different sampling strategies based on classical image segmentation methods applied to a
raw NYUv2 [3] instance. All methods perform image partitioning, then we replace depth data with zeros in segments with
area below a predefined threshold value. Threshold was chosen empirically, this parameter may vary.

in real-time.

III. PROPOSED APPROACH

a) Architecture overview.: The general structure of the
proposed architecture is shown in Fig. 1. Our architecture
design follows the standard encoder-decoder paradigm with
a pretrained backbone network modified for RGBD input.
In our experiments, we use the EfficientNet family [22] as
a backbone. The decoder part is based on a lightweight
RefineNet decoder [23] combined with a custom modulation
branch described below. The network takes an image, sensor
depth, and a mask as input and outputs a completed depth
map. No additional data is required.

b) Decoder Modulation Branch.: To introduce the de-
coder modulation branch, let us take a closer look at the
forward propagation path of the network. The backbone
network generates feature maps from the input RGBD signal.
The input signal initially has an inhomogeneous spatial dis-
tribution, since a part of the depth data is missing. The signal
compression inside a backbone smoothes this inhomogeneity,
which works well for small depth gaps. If the depth gaps are
too large, the convolutions generate incorrect activations due
to the domain shift between RGB and RGBD signals. Aiming
to reduce this domain gap, we propose to learn spatially-
dependent scale and bias for normalized feature maps inside
the decoder part of the architecture. This procedure is called
spatially-adaptive denormalization (SPADE) and was first
introduced by Park et al. [10].

Let f i
n,c,y,x denote the activation maps of the ith layer of

the decoder for a batch of N samples with shape Ci×Hi×Wi,
and let m denote a modulation signal. The output value from
SPADE gi

n,c,y,x at location (n ∈ N,c ∈Ci,y ∈ Hi,x ∈Wi) is

gi
n,c,y,x = γ

i
n,c,y,x(m)

f i
n,c,y,x−µ i

c

σ i
c

+β
i
n,c,y,x(m), (1)

where µ i
c = 1

NiWiHi
∑n,x,y f i

n,c,y,x is the sample mean and

σ i
c =
√

1
NiWiHi

∑n,x,y( f i
n,c,y,x−µ i

c)
2 is the sample (biased) stan-

dard deviation, and γ i
n,c,y,x and β i

n,c,y,x are the spatially de-
pendent scale and bias for batch normalization respectively.
In our case, the modulation signal m is the input mask of
missing depth values.

Fig. 2 illustrates the decoder modulation branch in detail.
This subnetwork consists of a simple mask encoder com-
posed of convolutions with bias terms and activations and

SPADE blocks that perform modulation. A bias term in the
convolutions is necessary to avoid zero signals that can cover
a significant part of the input mask.

c) Sensor simulation strategy.: Existing highly anno-
tated large-scale indoor datasets do not always include both
sensor depth data and ground truth depth data [41], [3],
which might be an issue for the development of depth
completion models. If a dataset provides a reconstruction,
different physics based approaches [42], [43] can be used
for simulation. But it requires a time and computational
resources. If the real sensor data (or reconstructed depth too,
but rendering techniques are more suitable in this case) is
only available, we propose to use specially developed and
fast corruption techniques in order to obtain synthetic semi-
dense sensor data.

Let t ∈ T be a target sample that we want to degrade. Our
goal is to construct a function h : T → S that transforms
a depth map from the target domain T to pseudo-sensor
domain S. We assume that this procedure is sample-specific
and can be factorized: h(·) = zg(·|q) ◦ zn(·) = zn(zg(·|q)),
where q is the input RGB image. The term zg emulates a
zero masking process guided by the image and zn is the
zero masking caused by noise. The noise term zn represents
a random spattering procedure uniformly distributed over
the entire image. The specific form of zg may vary. Fig. 3
presents some possible approaches results. We performed
ablation experiments for the best method among them below.

d) Loss function.: Recent works underline two primary
families of losses that are conceptually different: pixel-wise
and pair-wise. Pixel-wise loss functions measure the mean
per-pixel distance between prediction and target, while their
pair-wise counterparts express the error by comparing the
relationships between pairs of pixels i, j in the output.
The latter loss functions force the relationship between each
pair of pixels in the prediction to be similar to that of the
corresponding pair in the ground truth. In this work, we
have experimented with several different single-term loss
functions, including pair-wise and pixel-wise approaches in
a logarithmic and actual domain. The logarithmic L1 pair-
wise loss function [44] appears to be the most suitable for
our network. It can be expressed as

L (yi,y∗i ) =
1
|O|2 ∑

i, j∈O

∣∣∣∣ log
yi

y j
− log

y∗i
y∗j

∣∣∣∣, (2)
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Fig. 4: Qualitative comparison with Gansbeke et al. [46], Li et al. [47], Huang et al. [29] on Matterport3D test set. We
train [46] and [47] on Matterport3D using the official code of the corresponding approaches. Results for [29] are based on
the official pretrained model. Rows 2 and 4 represent zoomed-in fragments from rows 1 and 3, respectively. All images
are created using color maps with the same value limits. Our model generates the completed depth map with very sharp
boundaries.

RMSE ↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑ SSIM ↑
Huang et al. [29] 1.092 0.342 0.661 0.750 0.850 0.911 0.936 0.799
Zhang et al. [31] 1.316 0.461 0.657 0.708 0.781 0.851 0.888 0.762

Gansbeke et al. [46] 1.161 0.395 0.542 0.657 0.799 0.887 0.927 0.700
Li et al. [47] 1.054 0.397 0.508 0.631 0.775 0.874 0.920 0.700

Gansbeke et al. [46] (ours) 1.264 0.484 0.675 0.741 0.826 0.888 0.920 0.780
Li et al. [47] (ours) 1.134 0.426 0.649 0.729 0.834 0.899 0.928 0.774

DM-LRN (ours) 0.961 0.285 0.726 0.813 0.890 0.933 0.949 0.844
LRN (ours) 1.028 0.299 0.719 0.805 0.890 0.932 0.950 0.843

LRN + mask (ours) 1.054 0.298 0.737 0.815 0.889 0.933 0.950 0.844

TABLE I: Matterport3D TEST. We use the results for Huang et al. [29] and Zhang et al. [31] reported in [29]. Gansbeke
et al. [46] and Li et al. [47] are trained on Matterport3D using their official implementations. Models labeled as “ours” are
trained using our proposed pipeline. The two bottom rows represent models without the decoder modulation branch, with
and without the mask on the input. RMSE and MAE are measured in meters.

where O is the set of pixels where the ground truth depth
exists, i, j are pixel indices, yi,y∗i are the predicted and target
depth respectively. Following Eigen et al. [45], our model
predicts logyi directly.

IV. EXPERIMENTAL SETUP

a) Datasets.: We perform comparative experiments on
the following datasets: Matterport3D [1], ScanNet [48],
NYUv2 [3] and KITTI[2]. Matterport3D includes real sensor
data and ground truth depth data obtained from official
reconstructed meshes. We use it as the primary target dataset.
In order to investigate the generalization capabilities of the
model, we perform validation of the models trained on the
Matterport3D dataset directly on ScanNet. NYUv2 does not
provide dense depth reconstruction for the entire dataset, so
we evaluate our sensor simulation strategy on this dataset.

Although our approach is not intended to be applied to
sparse depth sensors, we compare it with the best performing
models on the KITTI dataset.

b) Evaluation metrics: Following the standard evalua-
tion protocol for indoor depth estimation and completion, we
use root mean squared error (RMSE), mean absolute error
(MAE), δi, and SSIM. The δi metric denotes the percentage
of predicted pixels where the relative error is less than a
threshold i. Specifically, we evaluate δi for i equal to 1.05,
1.10, 1.25, 1.252, and 1.253; smaller values of i correspond
to making the δi metric more sensitive, while larger values
reflect a more accurate prediction. RMSE and MAE directly
measure absolute depth accuracy. RMSE is more sensitive to
outliers than MAE and is usually chosen as the main metric
for ranking models. In general, our testing pipeline for indoor



RMSE ↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑ SSIM ↑
Huang et al. [29] 0.244 0.097 0.736 0.850 0.945 0.982 0.992 0.812
Zhang et al. [31] 0.214 0.080 0.769 0.881 0.958 0.985 0.993 0.850

Gansbeke et al. [46] 0.223 0.074 0.829 0.899 0.954 0.980 0.990 0.850
Li et al. [47] 0.190 0.067 0.828 0.903 0.961 0.986 0.995 0.875

DM-LRN (ours) 0.198 0.054 0.900 0.933 0.962 0.982 0.992 0.918

TABLE II: ScanNet TEST. Cross-dataset testing demonstrates the strong generalization capability of our method. All models
are trained on Matterport3D. RMSE and MAE are measured in meters.

depth completion is similar to Huang et al. [29].1. Following
the KITTI leaderboard, we evaluate RMSE, MAE, iRMSE
and iMAE metrics on the KITTI dataset.

c) Implementation details: In our experiments, we use
the Adam [49] optimizer with initial learning rate set to
10−4, β1 = 0.9, β2 = 0.999 and without weight decay.
The pretrained EfficientNet-b4 [22] backbone is used unless
otherwise stated. Batch normalization is controlled by the
modulation process, so we fine-tune its parameters during the
first epoch only, and afterwards these parameters are fixed.
The training process is performed end-to-end for 100 epochs
on a single Nvidia Tesla P40 GPU. We implement all models
in Python 3.7 using the PyTorch library [50].

V. RESULTS

a) Matterport3D.: We begin by inferencing our in-
door pipeline on the Matterport3D dataset. Since very few
previous approaches have been tested and achieved good
results on this dataset, we train some of the best performing
open-source KITTI models [47], [46] for a fair comparison.
Assuming that the original training pipeline of these models
might be designed specifically for LiDAR data, we also
perform a complementary training procedure in our training
setup.

The results of this quantitative comparison are presented
in Table I. Our training pipeline applied to KITTI models
improves the results in terms of δi, especially with smaller
values of i, but leads to artifacts captured by RMSE values.
The original training setup of these methods also does not
show state of the art performance on Matterport3D (see
Table I). We use the original training procedure for further
experiments. These methods do not produce sharp edges
(see Fig. 4) that are crucial for indoor applications. Zhang
et al. [31] and Huang et al. [29] managed to address this
problem and received less blurry results. Our model produces
improved completed depth while being more accurate in
terms of both RMSE and MAE. In Table I, we also present
ablation experiments including different masking strategies.

A visual comparison is shown in Figure 4. Our model
keeps the sensor data almost unchanged and sharp. Moreover,
the geometric shapes of the interior layout and objects in the
scene remain distinct.

1The evaluation code is available on the official page
https://github.com/patrickwu2/Depth-Completion.
To keep a fair comparison, we opt for an evaluation procedure based on
the official code.

b) ScanNet.: In order to evaluate the generalization
capability of our method, we conduct a cross-dataset eval-
uation. Since the test split was not provided for depth
completion on ScanNet, we use 20% of the original scenes
for testing. For the sake of data diversity, we split all frames
into intervals of consecutive 20 frames and take one out of
each interval. We take the image with the largest variance
of Laplacian [51] and the image with the largest file size
(which indicates the level of details for a frame). We test
the models trained on Matterport3D [1] on this subset that
was not seen by the models during the training process.
Quantitative results are presented in Table II. Our method
significantly improves δ1.05, δ1.10, SSIM, and MAE metrics.

c) NYUv2.: Since this dataset provides both sensor and
reconstruction depth data only for the test subset, we use it
to verify our sensor simulation strategy that does not require
ground truth. We first cut off black borders (45, 15, 45, 40
pixels from the top, bottom, left, and right side, respectively)
from the original 640×480 RGBD images. Then the images
and depths are interpolated to 320× 256 resolution using
bilinear and nearest-neighbors sampling respectively. These
preprocessed RGBD images are used for pseudo sensor data
sampling. At test time, the original sensor and ground truth
depth data are used. We compare our sampling strategy with
the widely used random uniform sampling approach [8], [4].
Qualitative and quantitative results are presented in Fig. 5
and Table III. Since the original semi-dense depth maps
contain more accurate information, our training approach
demonstrates significant improvements in all target metrics.
The compared performance of models originally designed for
sparse inputs is shown in Table III. Our model demonstrates
strong results in this setup as well.

d) KITTI.: In general, this dataset is out of our scope,
since it consists of sparse LiDAR depth measurements. It is
a hard case for our model, because the architecture includes
a unified encoder for the joint RGBD signal, expecting
segments filled with correct depth values. Previous work [47]
has demonstrated that it is a suboptimal design for a sparse
depth completion model.

Since LiDAR-based outdoor depth completion differs from
our use-case scenario, we perform an additional search for
the most suitable loss function. As a result, we have chosen
the L2 loss in the logarithmic domain. As the LiDAR points
at the top of an image are rare, input images were cropped
to 256×1216 for both training and testing, following [4]. A
horizontal flip was used as data augmentation.



RGB Sensor GT Gansbeke et al.
[46]

Li et al. [47] Huang et al. [29] ours

Fig. 5: Qualitative comparison of methods on NYUv2 [3] test set trained using our semi-dense sampling strategy.

semi-dense (SLIC) sparse (uniform, 500 points)
RMSE ↓ rel ↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑ RMSE ↓ rel ↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑

Huang et al. [29] 0.271 0.016 0.981 0.991 0.994 – – – – –
Gansbeke et al. [46] 0.240 0.018 0.979 0.994 0.998 0.344 0.042 0.961 0.985 0.995

Li et al. [47] 0.192 0.013 0.988 0.997 0.999 0.272 0.034 0.973 0.992 0.997
DM-LRN (ours) 0.188 0.016 0.989 0.997 0.999 0.263 0.035 0.975 0.993 0.998

TABLE III: NYUv2 TEST. Quantitative comparison of training setups for different models. Semi-dense sampling preserves
more accurate information that leads to better results. We chose SLIC segmentation for semi-dense sampling. See Section VI
for details. Although our DM-LRN model is not intended to be applied to sparse depth sensors, it demonstrates strong results
in the sparse training setting in indoor environments. We do not use any densification scheme for target depth reconstruction.
Pseudo-sensor data is directly sampled from real sensor data.

A quantitative comparison2 is shown in Table IV. Being
designed for semi-dense sensors, our approach demonstrates
mid-level performance compared to the KITTI leaderboard.
In general, our model produces accurate depth maps, even
though there are some errors at the borders of the image.

RMSE MAE iRMSE iMAE
Cheng et al. [7] 1019 279 2.93 1.15
Gansbeke [46] 773 215 2.19 0.93
Lee et al. [52] 807 254 2.73 1.33
Qiu et al. [6] 758 226 2.56 1.15
Tang et al. [4] 736 218 2.25 0.99

Chen et al. [28] 753 221 2.34 1.14
Li et al. [47] 762 220 2.30 0.98

Ours 984 287 2.67 1.17

TABLE IV: KITTI TEST. Quantitative comparison with top
ranked KITTI models. All metrics are measured in millime-
ters.

2Depth visualisation is available on official KITTI benchmark page. It is
also available from this link.

VI. ABLATION STUDY

In these experiments we introduce some changes for our
model and simulation baselines to ensure that all components
do improve the final result. The architectural ablations were
performed on Matterport3D. The results are presented in
Table V. Our decoder modulation (DM) branch serves as
an adaptive batch normalization allowing to significantly
improve relative metrics being slightly better in absolute ones
comparing with standard batch normalization.

RMSE MAE δ1.05 δ1.25

no ImageNet pretraining 1.068 0.335 0.669 0.860
no fixed BatchNorm 0.985 0.297 0.609 0.882

no DM branch 1.028 0.299 0.719 0.889
DM-LRN 0.961 0.285 0.726 0.890

TABLE V: Matterport3D TEST. Quantitative results with
selected feature excluded. RMSE and MAE are measured
in meters.

We compared some pseudo-sensor sampling strategies

http://www.cvlibs.net/datasets/kitti/eval_depth_detail.php?benchmark=depth_completion&result=a962c20c1c51ef7d7603a32ea13b5b768081f495


looking for the most suitable for our scenario. All strate-
gies were investigated on NYUv2 using our network. The
summary results are presented in Table VI and VII.

RMSE rel δ1.25 δ1.252 δ1.253

Semi-dense
QUICKSHIFT [40] 0.201 0.015 0.988 0.997 0.999

SLIC [39] 0.188 0.016 0.989 0.997 0.999
HIERARCHICAL [38] 0.205 0.014 0.988 0.996 0.999

Sparse
Uniform [8] 0.263 0.035 0.975 0.993 0.998

TABLE VI: NYUv2 TEST. Quantitative results with different
segmentation approaches. The threshold value is set to 3000
pixels. RMSE is measured in meters. SLIC segmentation
provides the best result.

RMSE rel δ1.25 δ1.252 δ1.253

t = 2000 0.196 0.015 0.989 0.997 0.999
t = 3000 0.188 0.016 0.989 0.997 0.999
t = 4000 0.193 0.014 0.989 0.997 0.999

TABLE VII: NYUv2 TEST. Different threshold values for
strategy based on SLIC segmentation. RMSE is measured in
meters.

Finally, we performed experiments with backbone depth.
As it can be seen from Figure 6, our approach demonstrates
stable improvement with respect to backbone complexity. It
makes our model scalable.

Fig. 6: Matterport3D TEST. A dependency of RMSE of the
baseline model and the model with the decoder modulation
concerning the size of the backbone. LRN is the baseline
model with RGBD inputs. DM-LRN is the baseline with the
decoder modulation branch. The mask modulation consis-
tently gives an improvement in the target metric with the ex-
ception ”B3” configuration that demonstrated an unexpected
behavior, assumed to be a random outlier.

VII. CONCLUSION

In this work, we have proposed a new depth completion
method for semi-dense depth sensor maps with auxiliary
color images. Our main innovation is a novel decoder archi-
tecture that exploits statistical differences between mostly

filled and mostly empty regions. It is implemented by an
additional decoder modulation branch that takes a mask
of missing values as input and adjusts the activation mask
distribution in the decoder via SPADE blocks.

In experimental evaluation, our model has shown state-of-
the-art results on the Matterport3D dataset with generaliza-
tion to ScanNet, and even competitive performance on the
KITTI dataset with sparse depth measurements. We have also
proposed a new fast sensor simulation strategy for datasets
with raw sensor data and without reconstructed ground truth
depth, which allows us to achieve strong results on the
NYUv2 dataset.
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